MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. Grade 28 Titanium

N06975 nickel belongs to the nickel alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06975 nickel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
11 to 17
Fatigue Strength, MPa 210
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
40
Shear Strength, MPa 470
420 to 590
Tensile Strength: Ultimate (UTS), MPa 660
690 to 980
Tensile Strength: Yield (Proof), MPa 250
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1000
330
Melting Completion (Liquidus), °C 1430
1640
Melting Onset (Solidus), °C 1380
1590
Specific Heat Capacity, J/kg-K 460
550
Thermal Expansion, µm/m-K 13
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 50
36
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 8.9
37
Embodied Energy, MJ/kg 120
600
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
1370 to 3100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 22
43 to 61
Strength to Weight: Bending, points 20
39 to 49
Thermal Shock Resistance, points 18
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0.7 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 10.2 to 23.6
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.7 to 1.5
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4