MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. C34500 Brass

N06975 nickel belongs to the nickel alloys classification, while C34500 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06975 nickel and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 45
12 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 80
40
Shear Strength, MPa 470
220 to 260
Tensile Strength: Ultimate (UTS), MPa 660
340 to 430
Tensile Strength: Yield (Proof), MPa 250
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1430
910
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 460
380
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 50
24
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 8.9
2.6
Embodied Energy, MJ/kg 120
45
Embodied Water, L/kg 270
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 150
69 to 160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
12 to 15
Strength to Weight: Bending, points 20
13 to 16
Thermal Shock Resistance, points 18
11 to 14

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0.7 to 1.2
62 to 65
Iron (Fe), % 10.2 to 23.6
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.7 to 1.5
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4