MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. 204.0 Aluminum

N06985 nickel belongs to the nickel alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
5.7 to 7.8
Fatigue Strength, MPa 220
63 to 77
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 690
230 to 340
Tensile Strength: Yield (Proof), MPa 260
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1260
580
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 8.8
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 160
220 to 350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 23
21 to 31
Strength to Weight: Bending, points 21
28 to 36
Thermal Diffusivity, mm2/s 2.6
46
Thermal Shock Resistance, points 16
12 to 18

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
4.2 to 5.0
Iron (Fe), % 18 to 21
0 to 0.35
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0 to 0.050
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15