MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. 3303 Aluminum

N06985 nickel belongs to the nickel alloys classification, while 3303 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is 3303 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 45
23
Fatigue Strength, MPa 220
43
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 480
69
Tensile Strength: Ultimate (UTS), MPa 690
110
Tensile Strength: Yield (Proof), MPa 260
39

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1260
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
170
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
43
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 8.8
8.1
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
20
Resilience: Unit (Modulus of Resilience), kJ/m3 160
11
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 23
11
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 2.6
67
Thermal Shock Resistance, points 16
4.8

Alloy Composition

Aluminum (Al), % 0
96.6 to 99
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0.050 to 0.2
Iron (Fe), % 18 to 21
0 to 0.7
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15