MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. 535.0 Aluminum

N06985 nickel belongs to the nickel alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 45
10
Fatigue Strength, MPa 220
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 480
190
Tensile Strength: Ultimate (UTS), MPa 690
270
Tensile Strength: Yield (Proof), MPa 260
140

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1260
570
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 10
100
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
79

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 8.8
9.4
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
24
Resilience: Unit (Modulus of Resilience), kJ/m3 160
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
28
Strength to Weight: Bending, points 21
35
Thermal Diffusivity, mm2/s 2.6
42
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0 to 0.050
Iron (Fe), % 18 to 21
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.25
Tungsten (W), % 0 to 1.5
0
Residuals, % 0
0 to 0.15