MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. 6182 Aluminum

N06985 nickel belongs to the nickel alloys classification, while 6182 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 45
6.8 to 13
Fatigue Strength, MPa 220
63 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 480
140 to 190
Tensile Strength: Ultimate (UTS), MPa 690
230 to 320
Tensile Strength: Yield (Proof), MPa 260
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1260
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.4
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
23 to 32
Strength to Weight: Bending, points 21
30 to 38
Thermal Diffusivity, mm2/s 2.6
65
Thermal Shock Resistance, points 16
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0 to 0.25
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 18 to 21
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.9 to 1.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15