MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. 7022 Aluminum

N06985 nickel belongs to the nickel alloys classification, while 7022 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 45
6.3 to 8.0
Fatigue Strength, MPa 220
140 to 170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
26
Shear Strength, MPa 480
290 to 320
Tensile Strength: Ultimate (UTS), MPa 690
490 to 540
Tensile Strength: Yield (Proof), MPa 260
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1260
480
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 10
140
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
21
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
65

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 8.8
8.5
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1100 to 1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 23
47 to 51
Strength to Weight: Bending, points 21
47 to 50
Thermal Diffusivity, mm2/s 2.6
54
Thermal Shock Resistance, points 16
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0.1 to 0.3
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0.5 to 1.0
Iron (Fe), % 18 to 21
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 1.0
0.1 to 0.4
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15