MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. A535.0 Aluminum

N06985 nickel belongs to the nickel alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 45
9.0
Fatigue Strength, MPa 220
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
25
Tensile Strength: Ultimate (UTS), MPa 690
250
Tensile Strength: Yield (Proof), MPa 260
120

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1350
620
Melting Onset (Solidus), °C 1260
550
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 10
100
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
79

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 8.8
9.3
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
19
Resilience: Unit (Modulus of Resilience), kJ/m3 160
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
26
Strength to Weight: Bending, points 21
33
Thermal Diffusivity, mm2/s 2.6
42
Thermal Shock Resistance, points 16
11

Alloy Composition

Aluminum (Al), % 0
91.4 to 93.4
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 18 to 21
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 1.5
0
Residuals, % 0
0 to 0.15