MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. AISI 430 Stainless Steel

N06985 nickel belongs to the nickel alloys classification, while AISI 430 stainless steel belongs to the iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is AISI 430 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
24
Fatigue Strength, MPa 220
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 480
320
Tensile Strength: Ultimate (UTS), MPa 690
500
Tensile Strength: Yield (Proof), MPa 260
260

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 990
870
Melting Completion (Liquidus), °C 1350
1510
Melting Onset (Solidus), °C 1260
1430
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 10
25
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 55
8.5
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 8.8
2.1
Embodied Energy, MJ/kg 120
30
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
100
Resilience: Unit (Modulus of Resilience), kJ/m3 160
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 2.6
6.7
Thermal Shock Resistance, points 16
18

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.12
Chromium (Cr), % 21 to 23.5
16 to 18
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 18 to 21
79.1 to 84
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0 to 0.75
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0 to 1.5
0