MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. ASTM A182 Grade F122

N06985 nickel belongs to the nickel alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
23
Fatigue Strength, MPa 220
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 480
450
Tensile Strength: Ultimate (UTS), MPa 690
710
Tensile Strength: Yield (Proof), MPa 260
450

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Maximum Temperature: Mechanical, °C 990
600
Melting Completion (Liquidus), °C 1350
1490
Melting Onset (Solidus), °C 1260
1440
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 10
24
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
12
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 8.8
3.0
Embodied Energy, MJ/kg 120
44
Embodied Water, L/kg 270
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
140
Resilience: Unit (Modulus of Resilience), kJ/m3 160
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 2.6
6.4
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.015
0.070 to 0.14
Chromium (Cr), % 21 to 23.5
10 to 11.5
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0.3 to 1.7
Iron (Fe), % 18 to 21
81.3 to 87.7
Manganese (Mn), % 0 to 1.0
0 to 0.7
Molybdenum (Mo), % 6.0 to 8.0
0.25 to 0.6
Nickel (Ni), % 35.9 to 53.5
0 to 0.5
Niobium (Nb), % 0 to 0.5
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0 to 1.5
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010