MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. C443.0 Aluminum

N06985 nickel belongs to the nickel alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
9.0
Fatigue Strength, MPa 220
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 480
130
Tensile Strength: Ultimate (UTS), MPa 690
230
Tensile Strength: Yield (Proof), MPa 260
100

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1260
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
140
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 8.8
7.9
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
17
Resilience: Unit (Modulus of Resilience), kJ/m3 160
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
31
Thermal Diffusivity, mm2/s 2.6
58
Thermal Shock Resistance, points 16
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0 to 0.6
Iron (Fe), % 18 to 21
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0 to 0.5
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25