MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. EN 1.0425 Steel

N06985 nickel belongs to the nickel alloys classification, while EN 1.0425 steel belongs to the iron alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is EN 1.0425 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
24
Fatigue Strength, MPa 220
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 480
300
Tensile Strength: Ultimate (UTS), MPa 690
470
Tensile Strength: Yield (Proof), MPa 260
260

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1350
1460
Melting Onset (Solidus), °C 1260
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 10
50
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
2.2
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.5
Embodied Energy, MJ/kg 120
20
Embodied Water, L/kg 270
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
98
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 2.6
13
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.015
0 to 0.2
Chromium (Cr), % 21 to 23.5
0 to 0.3
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0 to 0.3
Iron (Fe), % 18 to 21
96.9 to 99.18
Manganese (Mn), % 0 to 1.0
0.8 to 1.4
Molybdenum (Mo), % 6.0 to 8.0
0 to 0.080
Nickel (Ni), % 35.9 to 53.5
0 to 0.3
Niobium (Nb), % 0 to 0.5
0 to 0.020
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 0 to 1.5
0
Vanadium (V), % 0
0 to 0.020