MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. EN AC-43200 Aluminum

N06985 nickel belongs to the nickel alloys classification, while EN AC-43200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06985 nickel and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
1.1
Fatigue Strength, MPa 220
67
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 690
190 to 260
Tensile Strength: Yield (Proof), MPa 260
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1350
600
Melting Onset (Solidus), °C 1260
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
140
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 8.8
7.8
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 160
66 to 330
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 23
20 to 28
Strength to Weight: Bending, points 21
28 to 35
Thermal Diffusivity, mm2/s 2.6
59
Thermal Shock Resistance, points 16
8.8 to 12

Alloy Composition

Aluminum (Al), % 0
86.1 to 90.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0 to 0.35
Iron (Fe), % 18 to 21
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0 to 0.15
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15