MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. Grade 19 Titanium

N06985 nickel belongs to the nickel alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
5.6 to 17
Fatigue Strength, MPa 220
550 to 620
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
47
Shear Strength, MPa 480
550 to 750
Tensile Strength: Ultimate (UTS), MPa 690
890 to 1300
Tensile Strength: Yield (Proof), MPa 260
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
370
Melting Completion (Liquidus), °C 1350
1660
Melting Onset (Solidus), °C 1260
1600
Specific Heat Capacity, J/kg-K 450
520
Thermal Conductivity, W/m-K 10
6.2
Thermal Expansion, µm/m-K 15
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 55
45
Density, g/cm3 8.4
5.0
Embodied Carbon, kg CO2/kg material 8.8
47
Embodied Energy, MJ/kg 120
760
Embodied Water, L/kg 270
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 160
3040 to 5530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
33
Strength to Weight: Axial, points 23
49 to 72
Strength to Weight: Bending, points 21
41 to 53
Thermal Diffusivity, mm2/s 2.6
2.4
Thermal Shock Resistance, points 16
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0 to 0.015
0 to 0.050
Chromium (Cr), % 21 to 23.5
5.5 to 6.5
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 18 to 21
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 8.0
3.5 to 4.5
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
71.1 to 77
Tungsten (W), % 0 to 1.5
0
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4