MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. SAE-AISI 1022 Steel

N06985 nickel belongs to the nickel alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
17 to 26
Fatigue Strength, MPa 220
190 to 300
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 480
310 to 340
Tensile Strength: Ultimate (UTS), MPa 690
480 to 550
Tensile Strength: Yield (Proof), MPa 260
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1350
1460
Melting Onset (Solidus), °C 1260
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 10
52
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 55
1.8
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.8
1.4
Embodied Energy, MJ/kg 120
18
Embodied Water, L/kg 270
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
190 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
17 to 19
Strength to Weight: Bending, points 21
17 to 19
Thermal Diffusivity, mm2/s 2.6
14
Thermal Shock Resistance, points 16
15 to 17

Alloy Composition

Carbon (C), % 0 to 0.015
0.18 to 0.23
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 18 to 21
98.7 to 99.12
Manganese (Mn), % 0 to 1.0
0.7 to 1.0
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Tungsten (W), % 0 to 1.5
0