MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. C17500 Copper

N06985 nickel belongs to the nickel alloys classification, while C17500 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
6.0 to 30
Fatigue Strength, MPa 220
170 to 310
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
45
Shear Strength, MPa 480
200 to 520
Tensile Strength: Ultimate (UTS), MPa 690
310 to 860
Tensile Strength: Yield (Proof), MPa 260
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1350
1060
Melting Onset (Solidus), °C 1260
1020
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
200
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 55
60
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 8.8
4.7
Embodied Energy, MJ/kg 120
73
Embodied Water, L/kg 270
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
120 to 2390
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
9.7 to 27
Strength to Weight: Bending, points 21
11 to 23
Thermal Diffusivity, mm2/s 2.6
59
Thermal Shock Resistance, points 16
11 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
2.4 to 2.7
Copper (Cu), % 1.5 to 2.5
95.6 to 97.2
Iron (Fe), % 18 to 21
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0 to 1.5
0
Residuals, % 0
0 to 0.5