MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. C48500 Brass

N06985 nickel belongs to the nickel alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 45
13 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 80
39
Shear Strength, MPa 480
250 to 300
Tensile Strength: Ultimate (UTS), MPa 690
400 to 500
Tensile Strength: Yield (Proof), MPa 260
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 990
120
Melting Completion (Liquidus), °C 1350
900
Melting Onset (Solidus), °C 1260
890
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.4
8.1
Embodied Carbon, kg CO2/kg material 8.8
2.7
Embodied Energy, MJ/kg 120
46
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 160
120 to 500
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
14 to 17
Strength to Weight: Bending, points 21
15 to 17
Thermal Diffusivity, mm2/s 2.6
38
Thermal Shock Resistance, points 16
13 to 17

Alloy Composition

Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
59 to 62
Iron (Fe), % 18 to 21
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0
0 to 0.4