MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. C61000 Bronze

N06985 nickel belongs to the nickel alloys classification, while C61000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
42
Shear Strength, MPa 480
280 to 300
Tensile Strength: Ultimate (UTS), MPa 690
390 to 460
Tensile Strength: Yield (Proof), MPa 260
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 990
210
Melting Completion (Liquidus), °C 1350
1040
Melting Onset (Solidus), °C 1260
990
Specific Heat Capacity, J/kg-K 450
420
Thermal Conductivity, W/m-K 10
69
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
16

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.4
8.5
Embodied Carbon, kg CO2/kg material 8.8
3.0
Embodied Energy, MJ/kg 120
49
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 160
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
13 to 15
Strength to Weight: Bending, points 21
14 to 16
Thermal Diffusivity, mm2/s 2.6
19
Thermal Shock Resistance, points 16
14 to 16

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
90.2 to 94
Iron (Fe), % 18 to 21
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5