MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. C82500 Copper

N06985 nickel belongs to the nickel alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
45
Tensile Strength: Ultimate (UTS), MPa 690
550 to 1100
Tensile Strength: Yield (Proof), MPa 260
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 990
280
Melting Completion (Liquidus), °C 1350
980
Melting Onset (Solidus), °C 1260
860
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
21

Otherwise Unclassified Properties

Density, g/cm3 8.4
8.8
Embodied Carbon, kg CO2/kg material 8.8
10
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 160
400 to 4000
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
18 to 35
Strength to Weight: Bending, points 21
17 to 27
Thermal Diffusivity, mm2/s 2.6
38
Thermal Shock Resistance, points 16
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0 to 0.1
Cobalt (Co), % 0 to 5.0
0.15 to 0.7
Copper (Cu), % 1.5 to 2.5
95.3 to 97.8
Iron (Fe), % 18 to 21
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
0 to 0.2
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.2 to 0.35
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5