MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. C96800 Copper

N06985 nickel belongs to the nickel alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
3.4
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
46
Tensile Strength: Ultimate (UTS), MPa 690
1010
Tensile Strength: Yield (Proof), MPa 260
860

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1350
1120
Melting Onset (Solidus), °C 1260
1060
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
52
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 55
34
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 8.8
3.4
Embodied Energy, MJ/kg 120
52
Embodied Water, L/kg 270
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
33
Resilience: Unit (Modulus of Resilience), kJ/m3 160
3000
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
32
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 2.6
15
Thermal Shock Resistance, points 16
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
87.1 to 90.5
Iron (Fe), % 18 to 21
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 35.9 to 53.5
9.5 to 10.5
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.0025
Tungsten (W), % 0 to 1.5
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5