MakeItFrom.com
Menu (ESC)

N06985 Nickel vs. S45503 Stainless Steel

N06985 nickel belongs to the nickel alloys classification, while S45503 stainless steel belongs to the iron alloys. They have 43% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is N06985 nickel and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
4.6 to 6.8
Fatigue Strength, MPa 220
710 to 800
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
75
Shear Strength, MPa 480
940 to 1070
Tensile Strength: Ultimate (UTS), MPa 690
1610 to 1850
Tensile Strength: Yield (Proof), MPa 260
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Maximum Temperature: Mechanical, °C 990
760
Melting Completion (Liquidus), °C 1350
1440
Melting Onset (Solidus), °C 1260
1400
Specific Heat Capacity, J/kg-K 450
470
Thermal Expansion, µm/m-K 15
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
15
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.8
3.4
Embodied Energy, MJ/kg 120
48
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
82 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
57 to 65
Strength to Weight: Bending, points 21
39 to 43
Thermal Shock Resistance, points 16
56 to 64

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.010
Chromium (Cr), % 21 to 23.5
11 to 12.5
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.5 to 2.5
1.5 to 2.5
Iron (Fe), % 18 to 21
72.4 to 78.9
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 6.0 to 8.0
0 to 0.5
Nickel (Ni), % 35.9 to 53.5
7.5 to 9.5
Niobium (Nb), % 0 to 0.5
0.1 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.4
Tungsten (W), % 0 to 1.5
0