MakeItFrom.com
Menu (ESC)

N07716 Nickel vs. 6013 Aluminum

N07716 nickel belongs to the nickel alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07716 nickel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
3.4 to 22
Fatigue Strength, MPa 690
98 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 580
190 to 240
Tensile Strength: Ultimate (UTS), MPa 860
310 to 410
Tensile Strength: Yield (Proof), MPa 350
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
580
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 13
8.3
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 280
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 300
200 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 28
31 to 41
Strength to Weight: Bending, points 24
37 to 44
Thermal Diffusivity, mm2/s 2.8
60
Thermal Shock Resistance, points 24
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.35
94.8 to 97.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.1
Copper (Cu), % 0
0.6 to 1.1
Iron (Fe), % 0 to 11.3
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.2
0.2 to 0.8
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 59 to 63
0
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.2
0.6 to 1.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.0 to 1.6
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15