MakeItFrom.com
Menu (ESC)

N07716 Nickel vs. C51000 Bronze

N07716 nickel belongs to the nickel alloys classification, while C51000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N07716 nickel and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.7 to 64
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 78
42
Shear Strength, MPa 580
250 to 460
Tensile Strength: Ultimate (UTS), MPa 860
330 to 780
Tensile Strength: Yield (Proof), MPa 350
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1430
960
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
77
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
18
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
18

Otherwise Unclassified Properties

Base Metal Price, % relative 75
33
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 13
3.1
Embodied Energy, MJ/kg 190
50
Embodied Water, L/kg 280
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 300
75 to 2490
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
10 to 25
Strength to Weight: Bending, points 24
12 to 21
Thermal Diffusivity, mm2/s 2.8
23
Thermal Shock Resistance, points 24
12 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
92.9 to 95.5
Iron (Fe), % 0 to 11.3
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 59 to 63
0
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0.030 to 0.35
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
4.5 to 5.8
Titanium (Ti), % 1.0 to 1.6
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5