MakeItFrom.com
Menu (ESC)

N07716 Nickel vs. C67300 Bronze

N07716 nickel belongs to the nickel alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N07716 nickel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
12
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 78
41
Shear Strength, MPa 580
300
Tensile Strength: Ultimate (UTS), MPa 860
500
Tensile Strength: Yield (Proof), MPa 350
340

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1480
870
Melting Onset (Solidus), °C 1430
830
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
95
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 75
23
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 13
2.7
Embodied Energy, MJ/kg 190
46
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
55
Resilience: Unit (Modulus of Resilience), kJ/m3 300
550
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
17
Thermal Diffusivity, mm2/s 2.8
30
Thermal Shock Resistance, points 24
16

Alloy Composition

Aluminum (Al), % 0 to 0.35
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 0 to 11.3
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 0.2
2.0 to 3.5
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 59 to 63
0 to 0.25
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.2
0.5 to 1.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 1.0 to 1.6
0
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5