MakeItFrom.com
Menu (ESC)

N07716 Nickel vs. C94700 Bronze

N07716 nickel belongs to the nickel alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N07716 nickel and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
7.9 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 78
43
Tensile Strength: Ultimate (UTS), MPa 860
350 to 590
Tensile Strength: Yield (Proof), MPa 350
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1480
1030
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 11
54
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 75
34
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 13
3.5
Embodied Energy, MJ/kg 190
56
Embodied Water, L/kg 280
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 300
110 to 700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
11 to 19
Strength to Weight: Bending, points 24
13 to 18
Thermal Diffusivity, mm2/s 2.8
16
Thermal Shock Resistance, points 24
12 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.35
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
85 to 90
Iron (Fe), % 0 to 11.3
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.2
0 to 0.2
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 59 to 63
4.5 to 6.0
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 1.0 to 1.6
0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3