MakeItFrom.com
Menu (ESC)

N07750 Nickel vs. CC492K Bronze

N07750 nickel belongs to the nickel alloys classification, while CC492K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N07750 nickel and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 1200
280
Tensile Strength: Yield (Proof), MPa 820
150

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 460
370
Thermal Conductivity, W/m-K 13
73
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
33
Density, g/cm3 8.4
8.8
Embodied Carbon, kg CO2/kg material 10
3.4
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 260
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
33
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
100
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 40
8.7
Strength to Weight: Bending, points 30
11
Thermal Diffusivity, mm2/s 3.3
23
Thermal Shock Resistance, points 36
10

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
83 to 89
Iron (Fe), % 5.0 to 9.0
0 to 0.2
Lead (Pb), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.7
0 to 2.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
1.5 to 3.0