MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. 6005 Aluminum

N07752 nickel belongs to the nickel alloys classification, while 6005 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07752 nickel and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 22
9.5 to 17
Fatigue Strength, MPa 450
55 to 95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 710
120 to 210
Tensile Strength: Ultimate (UTS), MPa 1120
190 to 310
Tensile Strength: Yield (Proof), MPa 740
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1330
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 13
180 to 200
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
180

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
77 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 37
20 to 32
Strength to Weight: Bending, points 29
28 to 38
Thermal Diffusivity, mm2/s 3.2
74 to 83
Thermal Shock Resistance, points 34
8.6 to 14

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
97.5 to 99
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 14.5 to 17
0 to 0.1
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 5.0 to 9.0
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 70 to 77.1
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
0.6 to 0.9
Sulfur (S), % 0 to 0.0030
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.1
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
0 to 0.1
Residuals, % 0
0 to 0.15