MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. AISI 405 Stainless Steel

N07752 nickel belongs to the nickel alloys classification, while AISI 405 stainless steel belongs to the iron alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
22
Fatigue Strength, MPa 450
130
Poisson's Ratio 0.29
0.28
Reduction in Area, % 23
51
Shear Modulus, GPa 73
76
Shear Strength, MPa 710
300
Tensile Strength: Ultimate (UTS), MPa 1120
470
Tensile Strength: Yield (Proof), MPa 740
200

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Mechanical, °C 960
820
Melting Completion (Liquidus), °C 1380
1530
Melting Onset (Solidus), °C 1330
1480
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 13
30
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 60
7.0
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 10
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 260
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
84
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 37
17
Strength to Weight: Bending, points 29
17
Thermal Diffusivity, mm2/s 3.2
8.1
Thermal Shock Resistance, points 34
16

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
0.1 to 0.3
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0 to 0.080
Chromium (Cr), % 14.5 to 17
11.5 to 14.5
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 5.0 to 9.0
82.5 to 88.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 70 to 77.1
0 to 0.6
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.0080
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.0030
0 to 0.030
Titanium (Ti), % 2.3 to 2.8
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.050
0