MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. 2024 Aluminum

N07773 nickel belongs to the nickel alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07773 nickel and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40
4.0 to 16
Fatigue Strength, MPa 220
90 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 480
130 to 320
Tensile Strength: Ultimate (UTS), MPa 710
200 to 540
Tensile Strength: Yield (Proof), MPa 270
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1460
500
Specific Heat Capacity, J/kg-K 450
880
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 13
8.3
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 260
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 180
70 to 1680
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 23
18 to 50
Strength to Weight: Bending, points 21
25 to 49
Thermal Shock Resistance, points 20
8.6 to 24

Alloy Composition

Aluminum (Al), % 0 to 2.0
90.7 to 94.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 27
0 to 0.1
Copper (Cu), % 0
3.8 to 4.9
Iron (Fe), % 0 to 32
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0.3 to 0.9
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
0
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 2.0
0 to 0.15
Tungsten (W), % 0 to 6.0
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15