MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. 2025 Aluminum

N07773 nickel belongs to the nickel alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07773 nickel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 40
15
Fatigue Strength, MPa 220
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 480
240
Tensile Strength: Ultimate (UTS), MPa 710
400
Tensile Strength: Yield (Proof), MPa 270
260

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1460
520
Specific Heat Capacity, J/kg-K 450
870
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 13
7.9
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 260
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
55
Resilience: Unit (Modulus of Resilience), kJ/m3 180
450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 23
37
Strength to Weight: Bending, points 21
40
Thermal Shock Resistance, points 20
18

Alloy Composition

Aluminum (Al), % 0 to 2.0
90.9 to 95.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 27
0 to 0.1
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 0 to 32
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
0
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.5 to 1.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 2.0
0 to 0.15
Tungsten (W), % 0 to 6.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15