MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. 357.0 Aluminum

N07773 nickel belongs to the nickel alloys classification, while 357.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07773 nickel and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 40
3.4
Fatigue Strength, MPa 220
76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 480
200
Tensile Strength: Ultimate (UTS), MPa 710
350
Tensile Strength: Yield (Proof), MPa 270
300

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1510
620
Melting Onset (Solidus), °C 1460
560
Specific Heat Capacity, J/kg-K 450
910
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 260
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
11
Resilience: Unit (Modulus of Resilience), kJ/m3 180
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 23
38
Strength to Weight: Bending, points 21
43
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0 to 2.0
91.3 to 93.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 27
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 32
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.030
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
0
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 2.0
0 to 0.2
Tungsten (W), % 0 to 6.0
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15