MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. 5086 Aluminum

N07773 nickel belongs to the nickel alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07773 nickel and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 40
1.7 to 20
Fatigue Strength, MPa 220
88 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 480
160 to 230
Tensile Strength: Ultimate (UTS), MPa 710
270 to 390
Tensile Strength: Yield (Proof), MPa 270
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1460
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 13
8.8
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 180
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
28 to 40
Strength to Weight: Bending, points 21
34 to 44
Thermal Shock Resistance, points 20
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 2.0
93 to 96.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 27
0.050 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 32
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
0
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 2.0
0 to 0.15
Tungsten (W), % 0 to 6.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15