MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. 5454 Aluminum

N07773 nickel belongs to the nickel alloys classification, while 5454 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07773 nickel and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 40
2.3 to 18
Fatigue Strength, MPa 220
83 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 480
140 to 200
Tensile Strength: Ultimate (UTS), MPa 710
230 to 350
Tensile Strength: Yield (Proof), MPa 270
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1510
650
Melting Onset (Solidus), °C 1460
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 13
8.6
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 180
68 to 590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
23 to 36
Strength to Weight: Bending, points 21
30 to 41
Thermal Shock Resistance, points 20
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 2.0
94.5 to 97.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 27
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 32
0 to 0.4
Magnesium (Mg), % 0
2.4 to 3.0
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
0
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 2.0
0 to 0.2
Tungsten (W), % 0 to 6.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15