MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. 6151 Aluminum

N07773 nickel belongs to the nickel alloys classification, while 6151 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07773 nickel and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 40
1.1 to 5.7
Fatigue Strength, MPa 220
80 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 480
190 to 200
Tensile Strength: Ultimate (UTS), MPa 710
330 to 340
Tensile Strength: Yield (Proof), MPa 270
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1510
650
Melting Onset (Solidus), °C 1460
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 13
8.2
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
3.5 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 180
520 to 580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
34
Strength to Weight: Bending, points 21
39
Thermal Shock Resistance, points 20
15

Alloy Composition

Aluminum (Al), % 0 to 2.0
95.6 to 98.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 27
0.15 to 0.35
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 0 to 32
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
0
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.6 to 1.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 2.0
0 to 0.15
Tungsten (W), % 0 to 6.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15