MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. 7022 Aluminum

N07773 nickel belongs to the nickel alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07773 nickel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 40
6.3 to 8.0
Fatigue Strength, MPa 220
140 to 170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 77
26
Shear Strength, MPa 480
290 to 320
Tensile Strength: Ultimate (UTS), MPa 710
490 to 540
Tensile Strength: Yield (Proof), MPa 270
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1460
480
Specific Heat Capacity, J/kg-K 450
870
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.5
2.9
Embodied Carbon, kg CO2/kg material 13
8.5
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 260
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1100 to 1500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 23
47 to 51
Strength to Weight: Bending, points 21
47 to 50
Thermal Shock Resistance, points 20
21 to 23

Alloy Composition

Aluminum (Al), % 0 to 2.0
87.9 to 92.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 27
0.1 to 0.3
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 0 to 32
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 1.0
0.1 to 0.4
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
0
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 2.0
0 to 0.2
Tungsten (W), % 0 to 6.0
0
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15