MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. EN 1.4462 Stainless Steel

N07773 nickel belongs to the nickel alloys classification, while EN 1.4462 stainless steel belongs to the iron alloys. They have 47% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is N07773 nickel and the bottom bar is EN 1.4462 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
26
Fatigue Strength, MPa 220
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 480
500
Tensile Strength: Ultimate (UTS), MPa 710
780
Tensile Strength: Yield (Proof), MPa 270
520

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Mechanical, °C 990
1060
Melting Completion (Liquidus), °C 1510
1450
Melting Onset (Solidus), °C 1460
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 75
17
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 13
3.6
Embodied Energy, MJ/kg 180
49
Embodied Water, L/kg 260
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
28
Strength to Weight: Bending, points 21
24
Thermal Shock Resistance, points 20
21

Alloy Composition

Aluminum (Al), % 0 to 2.0
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 27
21 to 23
Iron (Fe), % 0 to 32
63.7 to 71.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 2.5 to 5.5
2.5 to 3.5
Nickel (Ni), % 45 to 60
4.5 to 6.5
Niobium (Nb), % 2.5 to 6.0
0
Nitrogen (N), % 0
0.1 to 0.22
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 2.0
0
Tungsten (W), % 0 to 6.0
0