MakeItFrom.com
Menu (ESC)

N07773 Nickel vs. S17600 Stainless Steel

N07773 nickel belongs to the nickel alloys classification, while S17600 stainless steel belongs to the iron alloys. They have 41% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N07773 nickel and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
8.6 to 11
Fatigue Strength, MPa 220
300 to 680
Poisson's Ratio 0.29
0.28
Reduction in Area, % 56
28 to 50
Shear Modulus, GPa 77
76
Shear Strength, MPa 480
560 to 880
Tensile Strength: Ultimate (UTS), MPa 710
940 to 1490
Tensile Strength: Yield (Proof), MPa 270
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 990
890
Melting Completion (Liquidus), °C 1510
1430
Melting Onset (Solidus), °C 1460
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 75
13
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 13
2.9
Embodied Energy, MJ/kg 180
42
Embodied Water, L/kg 260
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
850 to 4390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
34 to 54
Strength to Weight: Bending, points 21
28 to 37
Thermal Shock Resistance, points 20
31 to 50

Alloy Composition

Aluminum (Al), % 0 to 2.0
0 to 0.4
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 18 to 27
16 to 17.5
Iron (Fe), % 0 to 32
71.3 to 77.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 45 to 60
6.0 to 7.5
Niobium (Nb), % 2.5 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 2.0
0.4 to 1.2
Tungsten (W), % 0 to 6.0
0