MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. 1070 Aluminum

N07776 nickel belongs to the nickel alloys classification, while 1070 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
4.5 to 39
Fatigue Strength, MPa 220
22 to 49
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
48 to 79
Tensile Strength: Ultimate (UTS), MPa 700
73 to 140
Tensile Strength: Yield (Proof), MPa 270
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
640
Melting Onset (Solidus), °C 1500
640
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 15
8.3
Embodied Energy, MJ/kg 210
160
Embodied Water, L/kg 270
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 180
2.1 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
7.5 to 14
Strength to Weight: Bending, points 20
14 to 22
Thermal Shock Resistance, points 20
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0 to 2.0
99.7 to 100
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
0 to 0.040
Iron (Fe), % 0 to 24.5
0 to 0.25
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0 to 0.030
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.030
Tungsten (W), % 0.5 to 2.5
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.040
Residuals, % 0
0 to 0.030