MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. 1235 Aluminum

N07776 nickel belongs to the nickel alloys classification, while 1235 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is 1235 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 39
28 to 34
Fatigue Strength, MPa 220
23 to 58
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
52 to 56
Tensile Strength: Ultimate (UTS), MPa 700
80 to 84
Tensile Strength: Yield (Proof), MPa 270
23 to 57

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
640
Melting Onset (Solidus), °C 1500
640
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 15
8.3
Embodied Energy, MJ/kg 210
160
Embodied Water, L/kg 270
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 180
3.8 to 24
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
8.2 to 8.6
Strength to Weight: Bending, points 20
15 to 16
Thermal Shock Resistance, points 20
3.6 to 3.7

Alloy Composition

Aluminum (Al), % 0 to 2.0
99.35 to 100
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 24.5
0 to 0.65
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.65
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.060
Tungsten (W), % 0.5 to 2.5
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1