MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. 2117 Aluminum

N07776 nickel belongs to the nickel alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 39
26
Fatigue Strength, MPa 220
95
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 470
200
Tensile Strength: Ultimate (UTS), MPa 700
300
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 970
220
Melting Completion (Liquidus), °C 1550
650
Melting Onset (Solidus), °C 1500
550
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 85
10
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 15
8.2
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
64
Resilience: Unit (Modulus of Resilience), kJ/m3 180
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 20
33
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0 to 2.0
91 to 97.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0 to 0.1
Copper (Cu), % 0
2.2 to 4.5
Iron (Fe), % 0 to 24.5
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.2 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.25
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15