MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. 328.0 Aluminum

N07776 nickel belongs to the nickel alloys classification, while 328.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 39
1.6 to 2.1
Fatigue Strength, MPa 220
55 to 80
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 700
200 to 270
Tensile Strength: Yield (Proof), MPa 270
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
510
Maximum Temperature: Mechanical, °C 970
180
Melting Completion (Liquidus), °C 1550
620
Melting Onset (Solidus), °C 1500
560
Specific Heat Capacity, J/kg-K 430
890
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
10
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 15
7.8
Embodied Energy, MJ/kg 210
140
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 180
92 to 200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
21 to 28
Strength to Weight: Bending, points 20
28 to 34
Thermal Shock Resistance, points 20
9.2 to 12

Alloy Composition

Aluminum (Al), % 0 to 2.0
84.5 to 91.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0 to 0.35
Copper (Cu), % 0
1.0 to 2.0
Iron (Fe), % 0 to 24.5
0 to 1.0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
0.2 to 0.6
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0 to 0.25
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
7.5 to 8.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.25
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5