MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. 5026 Aluminum

N07776 nickel belongs to the nickel alloys classification, while 5026 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
5.1 to 11
Fatigue Strength, MPa 220
94 to 140
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
150 to 180
Tensile Strength: Ultimate (UTS), MPa 700
260 to 320
Tensile Strength: Yield (Proof), MPa 270
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 970
210
Melting Completion (Liquidus), °C 1550
650
Melting Onset (Solidus), °C 1500
510
Specific Heat Capacity, J/kg-K 430
890
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 15
8.9
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 180
100 to 440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
26 to 32
Strength to Weight: Bending, points 20
33 to 37
Thermal Shock Resistance, points 20
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 2.0
88.2 to 94.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0 to 0.3
Copper (Cu), % 0
0.1 to 0.8
Iron (Fe), % 0 to 24.5
0.2 to 1.0
Magnesium (Mg), % 0
3.9 to 4.9
Manganese (Mn), % 0 to 1.0
0.6 to 1.8
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.55 to 1.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.2
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15