MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. 5154 Aluminum

N07776 nickel belongs to the nickel alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
3.4 to 20
Fatigue Strength, MPa 220
100 to 160
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
140 to 210
Tensile Strength: Ultimate (UTS), MPa 700
240 to 360
Tensile Strength: Yield (Proof), MPa 270
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 970
190
Melting Completion (Liquidus), °C 1550
640
Melting Onset (Solidus), °C 1500
590
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 15
8.8
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 180
64 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
25 to 37
Strength to Weight: Bending, points 20
32 to 42
Thermal Shock Resistance, points 20
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 2.0
94.4 to 96.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 24.5
0 to 0.4
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.2
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15