MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. EN AC-42100 Aluminum

N07776 nickel belongs to the nickel alloys classification, while EN AC-42100 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
3.4 to 9.0
Fatigue Strength, MPa 220
76 to 82
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 700
280 to 290
Tensile Strength: Yield (Proof), MPa 270
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
610
Melting Onset (Solidus), °C 1500
600
Specific Heat Capacity, J/kg-K 430
910
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 15
8.0
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 180
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 22
30 to 31
Strength to Weight: Bending, points 20
37 to 38
Thermal Shock Resistance, points 20
13

Alloy Composition

Aluminum (Al), % 0 to 2.0
91.3 to 93.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 24.5
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.25
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1