MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. EN AC-43500 Aluminum

N07776 nickel belongs to the nickel alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 39
4.5 to 13
Fatigue Strength, MPa 220
62 to 100
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 700
220 to 300
Tensile Strength: Yield (Proof), MPa 270
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
600
Melting Onset (Solidus), °C 1500
590
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 15
7.8
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180
130 to 200
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 22
24 to 33
Strength to Weight: Bending, points 20
32 to 39
Thermal Shock Resistance, points 20
10 to 14

Alloy Composition

Aluminum (Al), % 0 to 2.0
86.4 to 90.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 24.5
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
9.0 to 11.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.2
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15