MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. EN AC-45300 Aluminum

N07776 nickel belongs to the nickel alloys classification, while EN AC-45300 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 39
1.0 to 2.8
Fatigue Strength, MPa 220
59 to 72
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 700
220 to 290
Tensile Strength: Yield (Proof), MPa 270
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
630
Melting Onset (Solidus), °C 1500
590
Specific Heat Capacity, J/kg-K 430
890
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 15
8.0
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
160 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
23 to 29
Strength to Weight: Bending, points 20
30 to 35
Thermal Shock Resistance, points 20
10 to 13

Alloy Composition

Aluminum (Al), % 0 to 2.0
90.2 to 94.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 0 to 24.5
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.35 to 0.65
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0 to 0.25
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
4.5 to 5.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 1.0
0 to 0.25
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15