MakeItFrom.com
Menu (ESC)

N07776 Nickel vs. EN AC-45400 Aluminum

N07776 nickel belongs to the nickel alloys classification, while EN AC-45400 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07776 nickel and the bottom bar is EN AC-45400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 39
6.7
Fatigue Strength, MPa 220
55
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 700
260
Tensile Strength: Yield (Proof), MPa 270
130

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1550
630
Melting Onset (Solidus), °C 1500
560
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 85
10
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 15
7.8
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 270
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
14
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
32
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0 to 2.0
88.4 to 92.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 22
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 0 to 24.5
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 9.0 to 15
0
Nickel (Ni), % 50 to 60
0 to 0.1
Niobium (Nb), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 1.0
0 to 0.25
Tungsten (W), % 0.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15