MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. 380.0 Aluminum

N08020 stainless steel belongs to the iron alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 15 to 34
3.0
Fatigue Strength, MPa 210 to 240
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Shear Strength, MPa 380 to 410
190
Tensile Strength: Ultimate (UTS), MPa 610 to 620
320
Tensile Strength: Yield (Proof), MPa 270 to 420
160

Thermal Properties

Latent Heat of Fusion, J/g 300
510
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
590
Melting Onset (Solidus), °C 1360
540
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 12
100
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
83

Otherwise Unclassified Properties

Base Metal Price, % relative 38
10
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 6.6
7.5
Embodied Energy, MJ/kg 92
140
Embodied Water, L/kg 220
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 21
31
Strength to Weight: Bending, points 20
36
Thermal Diffusivity, mm2/s 3.2
40
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
3.0 to 4.0
Iron (Fe), % 29.9 to 44
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0 to 0.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5