MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. 4006 Aluminum

N08020 stainless steel belongs to the iron alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 15 to 34
3.4 to 24
Fatigue Strength, MPa 210 to 240
35 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 380 to 410
70 to 91
Tensile Strength: Ultimate (UTS), MPa 610 to 620
110 to 160
Tensile Strength: Yield (Proof), MPa 270 to 420
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1360
620
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
220
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
180

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.0
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 6.6
8.1
Embodied Energy, MJ/kg 92
150
Embodied Water, L/kg 220
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21
11 to 16
Strength to Weight: Bending, points 20
19 to 24
Thermal Diffusivity, mm2/s 3.2
89
Thermal Shock Resistance, points 15
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0 to 0.2
Copper (Cu), % 3.0 to 4.0
0 to 0.1
Iron (Fe), % 29.9 to 44
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15

Comparable Variants