MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. 5457 Aluminum

N08020 stainless steel belongs to the iron alloys classification, while 5457 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 15 to 34
6.0 to 22
Fatigue Strength, MPa 210 to 240
55 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 380 to 410
85 to 130
Tensile Strength: Ultimate (UTS), MPa 610 to 620
130 to 210
Tensile Strength: Yield (Proof), MPa 270 to 420
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
660
Melting Onset (Solidus), °C 1360
630
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
180
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
46
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
150

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 6.6
8.4
Embodied Energy, MJ/kg 92
160
Embodied Water, L/kg 220
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
18 to 250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21
13 to 21
Strength to Weight: Bending, points 20
21 to 28
Thermal Diffusivity, mm2/s 3.2
72
Thermal Shock Resistance, points 15
5.7 to 9.0

Alloy Composition

Aluminum (Al), % 0
97.8 to 99.05
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0 to 0.2
Iron (Fe), % 29.9 to 44
0 to 0.1
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 2.0
0.15 to 0.45
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.080
Sulfur (S), % 0 to 0.035
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1

Comparable Variants